Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Advancements in robotics and AI have increased the demand for interactive robots in healthcare and assistive applications. However, ensuring safe and effective physical human-robot interactions (pHRIs) remains challenging due to the complexities of human motor communication and intent recognition. Traditional physics-based models struggle to capture the dynamic nature of human force interactions, limiting robotic adaptability. To address these limitations, neural networks (NNs) have been explored for force-movement intention prediction. While multi-layer perceptron (MLP) networks show potential, they struggle with temporal dependencies and generalization. Long Short-Term Memory (LSTM) networks effectively model sequential dependencies, while Convolutional Neural Networks (CNNs) enhance spatial feature extraction from human force data. Building on these strengths, this study introduces a hybrid LSTM-CNN framework to improve force-movement intention prediction, increasing accuracy from 69% to 86% through effective denoising and advanced architectures. The combined CNN-LSTM network proved particularly effective in handling individualized force-velocity relationships and presents a generalizable model paving the way for more adaptive strategies in robot guidance. These findings highlight the importance of integrating spatial and temporal modeling to enhance robot precision, responsiveness, and human-robot collaboration. Index Terms —- Physical Human-Robot Interaction, Intention Detection, Machine Learning, Long-Short Term Memory (LSTM)more » « lessFree, publicly-accessible full text available August 18, 2026
An official website of the United States government

Full Text Available